

Landsat 8 OLI and Sentinel 2 Data Interoperability: Looking from the Calibration Perspective

Dennis Helder, USGS EROS Morakot Kaewmanee, SDSU M.M. Farhad, SDSU

Overview

- Introduction
 - Landsat 8 and the Sentinel 2 missions
- Calibration of Landsat and Sentinel 2
- Landsat/Sentinel Data Interoperability
 - Calibration Site Perspective
- Conclusions

Landsat 8 Overview

- Launched Feb 11, 2013
- 16 day repeat coverage (8 day with Landsat 7)
- 3% Reflectancebased absolute radiometric calibration
- **Equatorial crossing** time: 10am ± 15 min
- Field of view: 15°,

185km

Band	Description	Wavelength (micrometers)	Resolution (meters)
1*	Violet-Deep Blue	0.43 - 0.45	30
2*	Blue	0.45 - 0.51	30
3*	Green	0.53 - 0.59	30
4*	Red	0.64 - 0.67	30
4* 5	Near Infrared	0.85 - 0.88	30
6	Shortwave Infrared	1.57 - 1.65	30
7	Shortwave Infrared	2.11 - 2.29	30
8*	Panchromatic	0.50 - 0.68	15
9	Cirrus clouds	1.36 - 1.38	30
10**	Thermal infrared	10.62 - 11.19	30
11**	Thermal infrared	11.50 - 12.51	30

^{**100-}meter resolution data interpolated to 30 meters

Sentinel 2a Overview

- Launched June 23, 2015
- 10 day repeat coverage (5 day with Sentinel 2b)
- 3% absolute radiometric uncertainty (goal)
- Sentinel 2b launched March 7, 2017
- Equatorial crossing time: 10:30am
- Field of view: 20.6°, 290km

Sentinel-2 Bands	Central Wavelength (µm)	Resolution (m)
Band 1 - Coastal aerosol	0.443	60
Band 2 - Blue	0.490	10
Band 3 - Green	0.560	10
Band 4 - Red	0.665	10
Band 5 - Vegetation Red Edge	0.705	20
Band 6 - Vegetation Red Edge	0.740	20
Band 7 - Vegetation Red Edge	0.783	20
Band 8 - NIR	0.842	10
Band 8A - Vegetation Red Edge	0.865	20
Band 9 - Water vapour	0.945	60
Band 10 - SWIR - Cirrus	1.375	60
Band 11 - SWIR	1.610	20
Band 12 - SWIR	2.190	20

Landsat 8 & Sentinel 2

Comparison of Landsat 7 and 8 bands with Sentinel-2

Calibration of Landsat 8 and sentinel 2

Refined APICS Model

- Existing APICS Model was developed with Landsat 7 spectral bands, there was no 'gain factor' specific for Coastal Aerosol band
 - Refined APICS Model: generate gain factor cooperating the Coastal

Aerosol band

- using same Hyperion data that used for the APICS Model (5 dates)
- correcting a function to calculate 'gain factor'

Results of Refined APICS Model with

- Landsat8- Collection1(BQA,SZA),
- S2A (with RSR adj. in Blue band), and SZA over ROI
- S2B ,SZA Center Scene

$$\rho_{Librac}(\lambda, SZA, VZA) = \frac{K(\lambda) * \rho_h(\lambda)}{K(\lambda) * \rho_h(\lambda)}$$

Improvement for All

$$\rho_{Libya\ 4}(\lambda, SZA, VZA) = \frac{K(\lambda) * \rho_h(\lambda)}{[1 - (SZA - 30) * m_1(\lambda) - VZA(\lambda) * m_2(\lambda) - (VZA)^2 * m_3(\lambda)]}$$

SZA. Solar Zenith Angle. VZA. View Zenith Angle where

= scaling factor, to place the Hyperion spectra $\rho h(\lambda)$, on the MODIS-calibrated scale

= spectral content of the scene obtained using Hyperion, derived using co-incident images (Hyperio&MODIS) Solar Zenith Angle < 35 and View Angle +/- 10 degrees (5 scenes)

= The BRDF coefficients for solar zenith angle were derived using Terra MODIS and was scaled to 30 degrees solar zenith angle

m2,m3 = The BRDF coefficients for view zenith angle were derived using Hyperion measurements (± 15 deg)

Data used for SDSU APICS Model

- Libya4 PICS,
- > Landsat 8 Collection1 data 2013- June 2017 (Path/Row: 181/40)
 - Band Quality Assessment and SZA Angle over ROI
- S2A With Blue band RSR adjustment, Aug 2015- Aug2017: Tile 34RGS with various data processing versions i.e. v.2.01 in Aug 2015 till v.2.05 at present
 - > SZA Angle over ROI
- > S2B July 2017-September 2017 : Tile 34RGS
 - SZA Angle Center Scene

OLI-MEASURE VS SDSU ABSOLUTE CALIBRATION MODEL:

All available data from 2013 – Sep 2017 -: Landsat8 Collection1- BQA and Angle Information

Landsat 8 -OLI	C/A	C/A Blue		Red	NIR	SWIR1	SWIR2	
Avg, Measure	0.2287	0.2468	0.3368	0.4607	0.5836	0.6768	0.5985	
Avg, Model	0.2328 0.242		0.3402	0.4547	0.5783	0.6829	0.5926	
Diff% Meas-Model	-1.78%	1.68%	-0.99%	1.31%	0.91%	-0.91%	1.00%	
STD. of Residuals	1.12%	1.08%	0.90%	0.85%	0.65%	0.82%	1.81%	

SDSU Refined APICS Model shows that the OLI absolute Calibration is generally well within 2%,For all spectral bands.

S2A MSI-measure vs SDSU Absolute Calibration Model:

All available data from Aug 2015 – Aug 2017

Various Data processing version since Aug 2015

Replace RSR Coastal Aerosol & Blue S2B for S2A

Sentinel 2A - MSI	C/A	Blue	Green	Red	NIR	SWIR1	SWIR2
Avg, Measure	0.2329	0.2547	0.3353	0.4753	0.5884	0.6823	0.5966
Avg, Model	0.2317	0.2517	0.3366	0.4623	0.5817	0.6854	0.5928
Diff% Meas-Model	0.31%	1.22%	-0.42%	2.81%	1.14%	-0.47%	0.64%
STD. of Residuals	1.12%	1.11%	1.02%	1.03%	0.90%	1.09%	2.10%

SDSU Refined APICS model shows that the S2A absolute Calibration is generally well within 1.5%, except Red band within 2.8%

S2A & S2B MSI Spectral Response Average - VNIR

S2B MSI-measure vs SDSU Absolute Calibration Model:

All available data from July 2017 - Sep 2017

S2A & S2B MSI Spectral Response Average - Blue, Red Bands

Sentinel 2B- MSI	C/A	Blue	Green	Red	NIR	SWIR1	SWIR2
Avg, Measure	0.2294	0.2548	0.3363	0.4760	0.5877	0.6828	0.6134
Avg, Model	0.2320	0.2524	0.3349	0.4673	0.5887	0.6916	0.6094
Diff% Meas-Model	-1.15%	0.92%	0.39%	1.85%	-0.17%	-1.28%	0.66%
STD. of Residuals	0.74%	0.92%	0.90%	0.90%	0.56%	0.54%	1.60%

SDSU Refined APICS model shows that the S2A absolute Calibration is generally well within 2%, for all bands

SDSU Absolute Calibration Model results

OLI: all data available between March 2013 and Aug 2017

OLI-LC1 absolute calibration is generally within 2%, for all bands

S2A: all data available between August 2015 and Aug 2017

MSI-1 absolute calibration is generally within 2% except for Red band (2.8%)

S2B: all data available between July 2017 and Sep 2017

MSI-2 absolute calibration is generally within 2% for all bands

Landsat/sentinel data interoperability

TOA Reflectances

Landsat 8/Sentinel 2a Measurements of Libya 4

R	RAW TOA REFLECTANCE								
	L8	S2a	Abs. Diff.	% Diff.					
CA	0.230	0.233	0.003	1.4					
В	0.247	0.255	0.008	2.9					
G	0.336	0.335	0.001	0.3					
R	0.459	0.476	0.017	3.4					
NIR	0.582	0.589	0.007	1.1					
SWIR 1	0.673	0.683	0.010	1.4					
SWIR 2	0.594	0.597	0.003	0.4					

Landsat/sentinel data interoperability

TOA Reflectances + SBAF Correction

Spectral Band Adjustment Factor (SBAF)

The value of the reflectance in a specific spectral band of a sensor is calculated by integrating the SRF of the sensor with the hyperspectral reflectance profile, averaged by the respective SRF:

$$\rho_{band} = \frac{\int_0^\infty \rho_\lambda \cdot SRF_\lambda d\lambda}{\int_0^\infty SRF_\lambda d\lambda}$$

 ho_{band} is the averaged reflectance for each spectral band of the sensor [unitless]; ho_{λ} is the hyperspectral reflectance incident [unitless]; and SRF is the Spectral Response Function [unitless].

SBAF is the ratio of the reflectance of two sensors to compensate the differences in RSR of two sensors. $\int \rho_{\lambda} \cdot RSR_{\lambda(L8)} d\lambda$

•
$$SBAF = \frac{\frac{\int \lambda \lambda (L8)}{\int RSR_{\lambda(L8)}d\lambda}}{\frac{\int \rho_{\lambda} RSR_{\lambda(S2)}d\lambda}{\int RSR_{\lambda(S2)}d\lambda}}$$

Landsat 8/Sentinel 2a Measurements of Libya 4

F	RAW TOA REFLECTANCE					SBAF (
	L8	S2a	Abs. Diff.	% Diff.	L8	S2a	Abs. Diff.	% Diff.	
CA	0.230	0.233	0.003	1.4	0.230	0.235	0.005	2.2	
В	0.247	0.255	0.008	2.9	0.247	0.248	0.001	0.1	
G	0.336	0.335	0.001	0.3	0.336	0.337	0.001	0.2	
R	0.459	0.476	0.017	3.4	0.459	0.465	0.006	1.2	
NIR	0.582	0.589	0.007	1.1	0.582	0.588	0.006	1.0	
SWIR 1	0.673	0.683	0.010	1.4	0.673	0.681	0.008	1.2	
SWIR 2	0.594	0.597	0.003	0.4	0.594	0.596	0.002	0.2	

Landsat/sentinel data interoperability

 TOA Reflectances + SBAF Correction+ SZA Correction

Landsat 8 Simple BRDF (SZA)

TOA Reflectance vs SZA of Libya 4 for CA Band

L8 Simple BRDF (SZA) Model

Statistically Significant
Slopes in These Bands
Suggest BRDF (SZA)
correction would be useful

Reflectance comparison after BRDF+SBAF (Libya 4)

Reflectance comparison after BRDF+SBAF (Libya 4)

Reflectance comparison after BRDF+SBAF (Libya 4)

Landsat 8/Sentinel 2a Measurements of Libya 4

RAW TOA REFLECTANCE					w	SBAF (Correcti	on	w/ SBAF + SZA Correction			
	L8	S2a	Abs. Diff.	% Diff.	L8	S2a	Abs. Diff.	% Diff.	L8	S2a	Abs. Diff.	% Diff.
CA	0.230	0.233	0.003	1.4	0.230	0.235	0.005	2.2				
В	0.247	0.255	0.008	2.9	0.247	0.248	0.001	0.1				
G	0.336	0.335	0.001	0.3	0.336	0.337	0.001	0.2				
R	0.459	0.476	0.017	3.4	0.459	0.465	0.006	1.2				
NIR	0.582	0.589	0.007	1.1	0.582	0.588	0.006	1.0	0.585	0.588	0.003	0.5
SWIR 1	0.673	0.683	0.010	1.4	0.673	0.681	0.008	1.2	0.680	0.682	0.002	0.3
SWIR 2	0.594	0.597	0.003	0.4	0.594	0.596	0.002	0.2	0.599	0.597	0.002	0.3

Conclusions

- Well calibrated instruments ≠ Data Interoperability
 - Landsat 8 and Sentinel 2 are both well calibrated instruments
 - Raw time series derived from both instruments are OK, but not without measurable offsets
 - More than one reflectance unit even in good scenarios
- Spectral bandpass differences must be taken into account
 - Biases can be reduced significantly, less than one reflectance unit in this case study
 - Requires knowledge of the thing you are measuring!
- How can this issue be addressed?
 - Suggests we need to consider the entire imaging chain from instrument design, instrument/data calibration, and atmospheric compensation to obtain consistent surface reflectance data products
 - For extended consideration of this topic consider attending...

Our Panel of Experts:

Landsat Calibration

Brian Markham, NASA GSFC Ron Morfitt. USGS EROS

Sentinel 2 Calibration

Ferran Gascon, ESA Sebastien Clerc, ARGANS

Geometric Calibration

Jim Storey, USGS EROS SGT Landsat/Sentinel 2 Applications

> Jeff Masek, NASA GSFC David Roy, SDSU

Adam Lewis. Geoscience Australia Nima Pahlevan, NASA GSFC

Workshop format:

- Presentations from panel of experts
- Panel discussions
- Audience 0&A

Desired Outcomes:

- Better understanding of cross-calibration of Landsat and Sentinel 2.
- Understanding the impact of cross-calibration on data interoperability.
- Recommendations for further cross-calibration
- Recommendations for cross-calibration methology of other optical remote sensors.
- Publication of workshop results.

PECORA 20

Sioux Falls, SD November 14-16, 2017

Sioux Falls Convention Center

Thank You!

Dennis Helder

dhelder@usgs.gov

dennis.helder@sdstate.edu

